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Abstract—A novel balanced electroabsorption modulated pho- intensity noise (RIN), and common amplified spontaneous
tonic link for simultaneous suppression of even-order distortions, emission (ASE) noise. Shot-noise-limited performance can be

third-order distortions, laser relative intensity noise (RIN), and  5chieved and, therefore, with increasing laser power, link gain
common amplified spontaneous emission noise at the same modu-

lator bias point was experimentally demonstrated for the first time. and NF Improve dramatlca_lly [11-(3]. .

By biasing the balanced electroabsorption modulator at the third- ~ Conventional balanced links employ LiNg@ross-coupled
order null, the third-order distortions were suppressed, while the Mach—Zehnder modulators (X-MZM). The X-MZM must be bi-
balanced link architecture suppressed all even-order distortions ased at quadrature to enable balanced outputs (equal dc inten-
and common mode noises. The fabricated balanced electroabsorp-gitiag and 1800ut-of-phase modulated signals). Due to the si-
tion modulator (B-EAM) showed well-matched dc characteristics . . . 4

in terms of I-V and transfer curve. System experiments were per- _nu50|dal behavior of its transfer curve, operating the XTMZM
formed to compare Single-EAM and B-EAM links. In the B-EAM  in balanced mode suppresses the second-order distortions, but
link, 2-dB suppression of laser RIN and 20-dB improvementin spu- maximizes the third-order distortions. Although system perfor-
rious free dynamic range over the single-EAM link were observed. mance improves in terms of NF due to laser RIN suppression,

Index Terms—Balanced fiber-optic links, distortion suppres- the third-order distortions remain and limit the SFDR.

sion, electroabsorption modulator, intermodulation distortion, As a solution to this dilemma, we propose a novel balanced
microwave photonics, relative intensity noise suppression. electroabsorption modulated photonic link which simulta-

neously suppresses laser RIN, common ASE noise, and all

I. INTRODUCTION even-order distortions independent of the applied bias, as well

as nulling of the third-order distortions. Electroabsorption mod-
UE TO THE benefits of optical fiber (low loss, electro-yjators (EAMs) are attractive due to their small size, ultrawide
magnetic immunity, light weight, and ultrawide bandpandwidth [4], lowV; [5], and their ability to be integrated
width), microwave photonic links are attractive for applicationgith semiconductor optical amplifiers (SOAs) and distributed
in antenna remoting, optical control of phased array antenngsadpack (DFB) lasers [6]. Much effort has been focused on
fiber-radio, and cable television distribution. These applicatiomﬁearizing the EAM transfer curve. The developed techniques
possess stringent requirements in terms of link gain, noigg|ude electronic predistortion [7], distortion emulation and
figure (NF), and spurious free dynamic range (SFDR). To me@hersal [8], feed-forward compensation [9], RF current mod-
these demands, external intensity modulated direct detect{Q8tion [10], exploitation of the wavelength dependence of the
links have been employed. Among these, balanced links antum-confined Stark shift [11], dual-EAM approach [12],
attractive due to their ability to simultaneously improve SFDRyjloring of the absorption coefficient along the propagation
and NF by suppressing all even-order distortions, laser relaty@ection [13], and linearly combining the Franz—Keldysh and
guantum-confined Stark effects [14], but these techniques
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Upper c&?&gor Lower Due to t_h_is unique ability, we may leverage on the k_)alanced
Ground Ground link’s ability to suppress laser RIN, common ASE noise, and
all-even order distortions without placing any restrictions on the
\ / modulator’s bias point. Therefore, a balanced electroabsorption
modulated photonic link can simultaneously suppress laser RIN,

common ASE noise, all even-order distortions, and third-order

distortions. Shot-noise-limited performance, ultralow NF, and

f SI-InP * fifth-order distortion limited SFDR can be simultaneously at-

' tained.
Upper EAM Lower EAM
(a) B. Device Fabrication
The epitaxial layers were grown by molecular beam epitaxy
Center . .
Upper Conductor Lower (MBE) on SI-InP. The waveguide structure consisted of a large
Ground Ground InAIGaAs core with a thin bulk InAIGaAsX, = 1480 nm)

active region and InAlGaAs cladding layers [17]. InAlGaAs
setback layers were incorporated to prevent dopant diffusion
into the active layer during MBE growth. Highly doped InGaAs
layers were used for the top and bottom p- and n-contact layers,
respectively.
A double mesa structure was fabricated by wet etching to
Upper EAM Lower EAM form an inde>.<-guided waveguide and allow access to the Ipwer
(b) InGaAs ohmic contact layer. To bury the waveguide, passivate
the sidewalls, reduce parasitic capacitance, and provide a

Fig. 1. B-EAM. (a) Device schematic. (b) SEM of a fabricated B-EAM. Thejielectric bridge to interconnect the CPW transmission line

B-EAM consists of a pair of EAMs monolithically integrated with a CPW,, . ; "
transmission line on SI-InP. The center conductor connects the p—contacwgh the top ohmic contact, photosensitive benzocyclobutane

the upper EAM to the n-contact of the lower EAM. (Photo-BCB) was spun-on and patterned by optical lithography
and subsequent development. It was hardcured in an oven set to

Upper EAM 400 °C for 30 min. To expose the top p-contact for self-aligned

- metallization, the patterned Photo-BCB was dry etched with

CF;:0; (4:1) plasma. n- and p-type alloyed ohmic contacts

Pypper and the CPW transmission line were individually formed by

> elegtron beam evapqrauon and |If.t0ff process. Finally, a_bngf

in \/\/\ rapid thermal annealing step was included to ensure activation

,7£@_| of the ohmic contacts.
—P/\/\/ Ill. EXPERIMENTAL RESULTS

\ Piower A. B-EAM Electrical and Optical Characteristics

Fig. 3 shows the balanced-mode dc transfer curve for a
B-EAM with 9 x 250 ym? waveguide dimensions and the
Fig.2. Device principle: dc bias is applied in series, while the RF signals fedaV trace for each individual EAM. Both the normalized
the center conductor. The B-EAM outputs are balanced independent of dc bt#ansfer curve and—V trace showed well-matched behavior.

The dark current level was 100 nA and the breakdown voltage

Il. B-EAM was~7 V. To measure the balanced mode dc transfer curve, an

external-cavity tunable laser (ECTL) (1550-nm wavelength and
0- dBm optical power incident on each EAM) and two dc power

Fig. 1 depicts the schematic structure and scanning electsupplies were required. Power supply 1 applied a 4-V reverse
micrograph (SEM) of a fabricated B-EAM, which consists obias between the CPW upper and lower ground conductors.
a pair of pin waveguide EAMs monolithically integrated withPower supply 2 was placed across the lower EAM and its
a coplanar waveguide (CPW) transmission line on semi-insusltage was swept from 0 to 4 V. The resulting fiber-to-fiber
lating (SI) InP. The center conductor connects the p-contacttedinsmitted optical power was measured using an optical power
the upper EAM to the n-contact of the lower EAM. To operateensor. The balanced-mode dc transfer curve shows improved
the device in balanced mode (Fig. 2), dc bias is applied besmplementary behavior than previously reported in [15]. The
tween the two ground electrodes of the CPW, and the RF stV fiber-to-fiber insertion loss for the upper and lower EAM’s
nals are applied between the center conductor and ground elgas 14 dB, and the extinction ratio at 4-V bias was 8 dB.
trodes via a custom CPW probe with an integrated dc blo&pplying the definition given in [18], the equivalehi. for the
and dc biasing terminal. Unlike the X-MZM, the outputs of theipper and lower EAMs was 8 V. It should be mentioned that the
B-EAM are always balanced, independent of the bias voltagrirrent device has not been optimized for [Gior insertion

Lower EAM

A. Device Structure and Link Operating Principle
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g 23 i L ] capacitance (calculated to be 3.8 pF per EAM) from the pair
3l ¥ ] of EAMs. Higher bandwidth can be achieved by reducing the
b ¢ ] width and length of the EAMs.
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_100 A 'l A 'l A 1 1 i A 'l A _ .
10 8 6 -4 =2 o0 2 B. B-EAM Link Test Bed
Voltage (V) Fig. 5illustrates the B-EAM experimental setup. The driving
(b) microwave signals were pre-amplified and low-pass-filtered

prior to feeding the modulator. An optical delay line and
Fig. 3. B-EAM dc characteristics. (a) Normalized balanced-mode dc transfgariable optical attenuator on the upper and lower output
curve. (b)I-V curves of the upper and lower EAMs in a B-EAM with:9250 arms Compensated for RF phase and amplitude mismatch
um? waveguides. Well-matched characteristics were observed. ) . !

respectively. A 10-GHz balanced photodetector received the

modulated optical signals, and a 50-GHz spectrum analyzer

’6-30 LML AL R B S monitored them. This setup was also used to test Single-EAM
@ \ links by disconnecting one fiber arm to the balanced receiver.
o 40r 1 A monolithic approach can be employed to reduce the trans-
2 , mitter complexity and improve the phase stability of the link.
%_50 A "-.‘. i On the input side of the B-EAM, a DFB laser and a Y-branch
& \.\ or multimode interference coupler may be employed.

J d"""\v\\ On the output side, polarization multiplexing can be exploited
g60T ] to reduce the fiber count to one. Polarization rotators, splitters,
E and multiplexers have been monolithically integrated on InP

70 it e [19]

o

12 3 45 6 7 8 9 10

Frequency (GHz) C. System Performance

Fig. 4. Electrical frequency response. A single-EAM in a B-EAM witha6 ~ To demonstrate RIN suppression, a DFB laser with 1543-nm
20\9;6:2; waveguides was tested. TRE limited bandwidth was 310 MHz at wavelength was employed as the optical source. The laser output
' was amplified by an erbium-doped fiber amplifier (EDFA) and
filtered by an optical bandpass filter to remove excess ASE.
loss. Due to accidental damage to the above-mentioned devitlee bias on the DFB laser was adjusted to maximize the RIN
we switched to a B-EAM with 16< 300 xm? waveguides for peak, which occurred at 910 MHz. The optical power was in-
the remainder of the experiments. All system level experimerdseased until RIN dominated the noise floor. To verify this, the
and frequency response measurements were performed withdptical power was increased by 3 dB, which resulted in a 6-dB
wider waveguide B-EAM. increase in the RIN spectrum. The bias on the modulator was set
Fig. 4 depicts theS,; parameter measured with a vector neto 0 V. Fig. 6 shows the measured RIN spectrum passing through
work analyzer and lightwave test set for the lower arm of thee Single-EAM and B-EAM. The total detected dc photocur-
B-EAM. A shunt resistor or termination was not employed. Terent for the Single-EAM and B-EAM links was 54@A and
dBm of optical power was incident on each EAM from thd.093 mA (including upper and lower arms), respectively. RIN
ECTL. The measured electrical 3-dB bandwidth was 310 MHauppression greater than 10 dB from dc to 1 GHz was achieved
at 2-V bias. The low frequency response was caused by the langth the B-EAM link. At higher frequencies, fiber path length
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Fig. 8. Two-tone measurement. (a) Single-EAM. (b) B-EAM. In both cases,
40 . — fo = 150 MHz, f, — fi = 30 MHz, and2f, — f; = 180 MHz. In the
Fundamental B-EAM link, the second-order distortiofy'>= — f1) was suppressed by 17 dB,
—- and assuming a thermal noise-limited noise fleed. {4 dBm/Hz), we observed
£ 50 - 20-dB improvement in SFDR.
o
=
E™3
g6 . In the balanced case, the 2HD and RIN were suppressed by 7.5
S and 2 dB at the RIN peak, respectively. The device used in this
E-70f 2HD - experiment had an insertion loss of 20 dB at 0-V bias. Much
higher RIN suppression can be achieved via optimization of the
.80 P S S S S fiber-to-fiber insertion loss through the B-EAM.
00 05 10 15 20 25 30 To examine the microwave linearity of the link, we performed
Frequency (GHz) a two-tone measurement. One microwave synthesizer was set
L) to 120 MHz (f;) and the other to 150 MHzf>). These sig-

Fa 7 Simult RIN and distort ] Sinale-EAM nals were pre-amplified and low-pass-filtered prior to driving
B S o o e e e modulator. We replaced the DFB laser with an ECTL setto
while the 2HD lied at 1.82 GHz. In the B-EAM link, the 2HD and RIN were1550 nm. After optical amplification and bandpass filtering, the
suppressed by 7.5 and 2 dB, respectively. laser power incident on the upper and lower EAM was 10 dBm.
The modulator bias was set to null the third-order distortion
matching becomes more stringent. By improving the phase mésid the link was balanced to suppress second-order distortions.
matches in the link, RIN suppression can be achieved oveil ke total dc photocurrent in the Single-EAM and B-EAM links
wider bandwidth. was 4.5uA and 21.24:A (upper plus lower arm). An RF am-
To demonstrate simultaneous RIN and distortion suppressigtifier with 52 dB of gain was employed to amplify the de-
the B-EAM was modulated at the RIN peak (910 MHz). Th&ected RF signals. Fig. 8 depicts the signal power plot of the
total incident optical and RF powers on the B-EAM were s&ingle-EAM and B- EAM links. In both links, the intermodu-
to 14 and 10 dBm, respectively. The third-order harmonic wéation distortion(2f, — f1) had a fifth-order RF power depen-
suppressed by adjusting the modulator’s bias voltage, while tthence. Although in the B-EAM link, the second-order distortion
second-harmonic distortion (2HD) was suppressed by compéi: — f1) was suppressed by 17 dB, it limited the SFDR. As-
sating for any amplitude and phase mismatch with the opticaiming a thermal noise limited noise floer174 dBm/Hz), the
attenuator and delay line, respectively. Fig. 7 contains the spbeead-band SFDR was calculated to be 83 and 68idB? for
trum analyzer traces showing the fundamental 910-MHz sigrtae B-EAM and Single-EAM links, respectively. Twenty deci-
and the 1.82-GHz 2HD for the Single-EAM and B-EAM linksbels of improvement in SFDR was observed for the B-EAM
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link over the Single-EAM link, while the actual improvement [8] J. Yu, T. Y. Chang, G. C. Wilson, T. H. Wood, N. J. Sauer, J. E.

due to the balanced link alone (assuming equal output RF signal Johnson, T. Tanbun-Ek, and P. A. Morton, “Linearization of 1,55-
. d to be 14.5 dB. Optimizing the B-EAM electroabsorption modulated laser by distortion emulation and reversal
powers) was estimated to be 14. - Uptimizing for 77-channel CATV transmission|lEEE Photon. Technol. Leftvol.

for low insertion loss and improving the phase mismatches in 10, pp. 433-435, Mar. 1998.
the experimental setup can result in much higher SFDR. [9] T.lwai, K. Sato, and K. Suto, “System distortion and noise in AM-SCM

. . . transmission systems employing the feedforward linearized MQW-EA
We modeled a B-EAM link using our prewously reported external modulator,’J. Lightwave Technqlvol. 13, pp. 1606-1612,

theory [16]. For a total received laser power of 10 mW, a RIN Aug. 1995.
level of —140 dBc/Hz, and a B-EAM with &, of 0.5 V and [10] G. C. Wilson, T. H. Wood, and U. Koren, “Integrated electroabsorp-
. . . . . . tion modulator/DBR laser linearized by RF current modulatidBEE
10-dB insertion loss, we predlctthagashot—nmse fifth-orderdis-  ppoion. Technol. Lettvol, 7, pp. 1154-1156, Oct. 1995.
tortion-limited SFDR of 130 dB4z*/> can be achieved. [11] K.K.Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. C. Chang, “Lin-
earization of 1.3+m MQW electroabsorption modulators using an all-
optical frequency-insensitive techniquéEZEE Photon. Technol. Left.
IV. CONCLUSION vol. 10, pp. 964—966, July 1998.
e . e[12] G. W. Lee and S. K. Han, “Wideband linear analog modulation using
Utilizing a novel balanced electroabsorption modulator, w dual electroabsorption modulator,”@LEO/Pacific Rim Tech. Digvol.
have successfully demonstrated, for the first time, simultaneous 2, Aug. 1999, pp. 195-196.

suppression of second-order distortion, third-order distortion{13] C- H- Lee and S. K. Han, "Linearity enhancement of electroabsorption
T . ' optical modulator by absorption variation in propagation directi®fi;”
and laser RIN at the same modulator bias point. We have owave Opt. Technol. Lettvol. 22, pp. 30-35, July 1999.

reviewed the device principle and fabrication technique, andi4] R.B.Welstand, J. T. Zhu, W. X. Chen, A. R. Clawson, P.K. L. Yu,and S.

performed both dc and RF characterization. A comparison A Pappert, “Combined Franz—Keldysh and quantum-confined Stark ef-
. . . fect waveguide modulator for analog signal transmissidnlightwave
between Single-EAM and B-EAM links was provided to Technol, vol. 17, pp. 497-502, Mar. 1999.

highlight the innovative capabilities of the B-EAM. By biasing [15] S. Mathai, T. Jung, F. Cappelluti, D. Novak, R. Waterhouse, G. Ghione,

the B-EAM at the third-order null and operating the link in D. Sivco, A. Y. Cho, and M. C. Wu, "Experimental demonstration of a
. . . balanced electroabsorption modulator, . Microwave Photon. Top-
balanced mode, 7.5-dB suppression of second-order distortion, ica) Meeting Tech. Dig.Sept. 2000, pp. 9-12.

and 2-dB suppression of laser RIN at the RIN peak (910 MHz]16] F. Cappelluti, S. Mathai, G. Ghione, and M. C. Wu, “High performance

was experimentally demonstrated. The two-tone measurement E;Cph;;g?g‘; 'ig)'fstus'j\’:ge‘;ngaz’r‘;gbe'ggggagzgrsﬁ’gr?g modulator,” in
showed 17-dB suppression of second-order distortion an@d7} m. k. Chin and W. S. C. Chang, “InGaAs/InAlAs quantum-well elec-

20-dB improvement in SFDR compared to the Single-EAM troabsorption waveguide modulators with large core waveguide struc-

link. With optimization of the device design to improve inser- U 1'355;9” and characterizatiomppl. Opt, vol. 34, pp. 1544-1553,

tion loss,V7, and bandwidth, as well as matching of the opticalj1g) r.B. welstand, S. A. Pappert, D. T. Nichols, L. J. Lembo, Y. Z. Liu, and
path lengths in the experimental setup, ultrawide SFDR and P. K. L. Yu, “Enhancement in electroabsorption waveguide modulator
Itralow NF can hieved. slope efficiency at high optical powetZEE Photon. Technol. Letvol.
ultralo can be achieved 10, pp. 961-963, July 1998.
[19] U.Hilbk, T. Hermes, P. Meissner, F. J. Westphal, G. Jacumeit, R. Stenzel,
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